Reagentless biosensors based on self-deposited redox polyelectrolyte-oxidoreductases architectures.
نویسندگان
چکیده
Reagentless fructose and alcohol biosensors have been produced with a versatile enzyme immobilisation technique which mimics natural interactions and flexibility of living systems. The electrode architecture is built up on electrostatic interactions by the sequential adsorption of redox polyelectrolytes and redox enzymes giving rise to the efficient transformation of substrate fluxes into electrocatalytic currents. All investigated multilayer structures were self-deposited on 3-mercapto-1-propanesulfonic acid monolayers self-assembled on gold electrodes. Fructose dehydrogenase, horseradish peroxidase (HRP) and the couple HRP-alcohol oxidase were electrochemically connected with a cationic poly[(vinylpyridine)Os(bpy)2Cl] redox polymer (RP) interface in a layer-by-layer self-deposited architecture. The dependence of the distance on the electrochemical response of this interface was also studied showing a clear decrease in the Faradaic current when the distance to the electrode surface was increased. The sensitivities obtained for each biosensor were 19.3, 58.1 and 10.6 mA M(-1) cm(-1) for fructose, H2O2 and methanol, respectively. The sensitivity values can be easily controlled by a rational deposition and manipulation of the charge in the catalytic layers. The electrostatic assembly of the electrochemical interface and the catalytic layers resulted in integrated biochemical systems in which mass transfer diffusion and heterogeneous catalytic and electron transfer steps are efficiently coupled and can be easily manipulated.
منابع مشابه
Charge transport in redox polyelectrolyte multilayer films: the dramatic effects of outmost layer and solution ionic strength.
The redox switching kinetics, that is, charge transfer and transport in layer-by-layer-deposited electroactive polyelectrolyte multilayers is systematically studied with variable-scan-rate cyclic voltammetry. The experiments are performed with films finished in the redox polycation (an osmium pyridine-bipyridine derivatized polyallylamine, PAH-Os) and the polyanion (polyvinyl sulfonate, PVS), i...
متن کاملFunctionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode.
Poly(amidoamine) dendrimers having various degrees of modification with the redox-active ferrocenyls were prepared by controlling the molar ratio of ferrocenecarboxaldehyde to amine groups of dendrimers. By alternate layer-by-layer depositions of partial ferrocenyl-tethered dendrimers (Fc-D) with periodate-oxidized glucose oxidase (GOx) on a Au surface, an electrochemically and enzymatically ac...
متن کاملModified Tin Oxide Based Bioelectrode for Reagentless Detection of Uric Acid
A reagentless uric acid biosensor has been realized using Copper implanted tin oxide thin film (Cu:SnO2) based matrix. The biosensing characteristics of implanted matrix have been studied using the electrochemical impedance spectroscopy and cyclic voltammetry. The prepared matrix (Cu:SnO2), because of the presence of Cu, possess redox properties so that the electron transfer from enzyme to the ...
متن کاملA novel reagentless amperometric immunosensor based on gold nanoparticles/TMB/Nafion-modified electrode.
A novel reagentless immunosensor was fabricated by immobilization of redox mediator 3,3',5,5'-tetramethylbenzidine (TMB) on the Nafion (Nf) film modified glassy carbon electrode. Gold nanoparticles were assembled onto the TMB/Nafion film modified electrode to provide active sites for the immobilization of antibody molecules. The antibody (anti-MIgG), in the present study, was fixed on the elect...
متن کاملQuinone-Based Polymers for Label-Free and Reagentless Electrochemical Immunosensors: Application to Proteins, Antibodies and Pesticides Detection
Polyquinone derivatives are widely recognized in the literature for their remarkable properties, their biocompatibility, simple synthesis, and easy bio-functionalization. We have shown that polyquinones present very stable electroactivity in neutral aqueous medium within the cathodic potential domain avoiding side oxidation of interfering species. Besides, they can act as immobilized redox tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biosensors & bioelectronics
دوره 15 1-2 شماره
صفحات -
تاریخ انتشار 2000